Orientation-Specificity of Adaptation: Isotropic Adaptation Is Purely Monocular
نویسندگان
چکیده
Numerous studies have found that prolonged exposure to grating stimuli reduces sensitivity to subsequently presented gratings, most evidently when the orientations of the adapting and test patterns are similar. The rate of sensitivity loss varies with angular difference indicating both the presence and bandwidths of psychophysical 'orientation channels'. Here we study the orientation dependency of contrast adaptation measured both monoptically and dichoptically. Earlier psychophysical reports show that orientation bandwidths are broader at lower spatial frequencies, and we confirm this with a simple von Mises model using 0.25 vs. 2 c.p.d. gratings. When a single isotropic (orientation invariant) parameter is added to this model, however, we find no evidence for any difference in bandwidth with spatial frequency. Consistent with cross-orientation masking effects, we find isotropic adaptation to be strongly low spatial frequency-biased. Surprisingly, unlike masking, we find that the effects of interocular adaptation are purely orientation-tuned, with no evidence of isotropic threshold elevation. This dissociation points to isotropic (or 'cross-orientation') adaptation being an earlier and more magnocellular-like process than that which supports orientation-tuned adaptation and suggests that isotropic masking and adaptation are likely mediated by separate mechanisms.
منابع مشابه
Psychophysical evidence for a purely binocular color system
Two adaptation experiments were conducted to examine a hypothesis for a purely binocular color system that responds only to simultaneous inputs from the two eyes and that inhibits the activities of a pair of monocular color systems with each receiving input from their respective eye. In the first experiment, after a red or green stimulus was presented to both eyes to adapt the hypothesized bino...
متن کاملA reevaluation of achromatic spatio-temporal vision: Nonoriented filters are monocular, they adapt, and can be used for decision making at high flicker speeds
Masking, adaptation, and summation paradigms have been used to investigate the characteristics of early spatio-temporal vision. Each has been taken to provide evidence for (i) oriented and (ii) nonoriented spatial-filtering mechanisms. However, subsequent findings suggest that the evidence for nonoriented mechanisms has been misinterpreted: those experiments might have revealed the characterist...
متن کاملInterocular transfer of orientation-specific fMRI adaptation reveals amblyopia-related deficits in humans
We devised an experimental strategy for assessing the cortical cross-talk between ocular subsystems. For this purpose we measured the interocular transfer of adaptation (IOTA) at different levels in the human brain, using orientation-selective fMRI adaptation. We tested 10 normally sighted and 10 stereoblind or stereodeficient amblyopic observers by adapting monocularly to phase-reversing, obli...
متن کاملLearning to adapt: Dynamics of readaptation to geometrical distortions
The visual system can adapt to optical blur, whereby the adapted image is perceived as sharp. Here we show that adaptation reduces blur-induced biases in shape perception, with repeated adaptations (perceptual learning), leading to unbiased perception upon re-exposure to blur. Observers wore a cylindrical lens of +1.00 D on one eye, thus simulating monocular astigmatism. The other eye was eithe...
متن کاملIntracortical origins of interocular suppression in the visual cortex.
The response of neurons in the primary visual cortex to an optimally oriented grating is usually suppressed quite dramatically when a second grating of, for example, orthogonal orientation is superimposed. Such "cross-orientation suppression" has been implicated in the generation of cortical orientation selectivity and local response normalization. Until recently, little experimental evidence w...
متن کامل